CSX Corporation, together with its subsidiaries based in Jacksonville, Fla., is one of North America’s leading transportation suppliers. With a transportation network that encompasses 21,000 route miles of track in 23 states, the District of Columbia, and the Canadian provinces of Ontario and Quebec, it operates an average of 1,300 trains per day, and transports more than 6.5 million carloads of products and raw materials a year.
Each year, its capital planning team receives more than 5,000 requests to replace worn rail in curves from its track supervisors. Prior to its utilization of OpenRail’s Operational Analytics, the team utilized data from multiple sources, including Rail Wear Measures, Sperry Car Defects, Rail History, and Tonnage to research and validate existing conditions before performing a manual review of each request to identify those that show evidence of poor condition. This onerous process was time consuming, tedious, and had the potential for human error.
In response to this challenge, CSX deployed OpenRail’s Operational Analytics to integrate data that previously existed across multiple silos into one interactive and graphical view. The simplification of this important first step, enabling timely access to trusted information wherever and whenever it is needed, provides CSX with the platform to deliver improved accuracy and efficiency from the word go.
The systems’ ability to link data visualization in OpenRail’s Operational Analytics with CSX’s legacy Patch Rail Request system allows team members to drill down into all data relating to a selected asset or work request, plus the ability to review embedded information including supporting photos and documentation. This seamless user experience provides the ability to approve of Patch Rail requests in real-time, has allowed CSX to reduce its annual patch rail planning program by more than a month, and is enabling more informed decisions at every step of the process. Building on the success of this digital advancement project, CSX is already looking at ways to replicate it for other work types, such as gauging and concrete pad repair.
CSX’s Jennifer Hollar, manager of engineering systems, explained, “OpenRail’s Operational Analytics has significantly reduced the time and effort involved in performing hundreds of millions of dollars’ worth of annual capital planning reviews for the CSX Patch Rail Program.”
The Beijing to Zhangjiakou High-speed Rail Project will become the world’s first high-speed railway with a design speed of 350 kilometers per hour and is being constructed at a total cost of CNY 53.5 billion in the Hebei province of Northeast China.
China Railway Engineering Consulting Group Co., Ltd. (CRECG), established as a subsidiary to China Railway Group Limited, is responsible for design and construction consulting of the 171-kilometer project. Using Bentley’s comprehensive modeling environment, CRECG’s design team significantly improved efficiency, saving around three months of design time and CNY 3 million in labor costs. Moreover, Bentley’s software is helping the company to set new benchmarks for rail in China and around the world.
The line, which forms part of China’s preparations for the 2022 Olympic Winter Games in Beijing, is highly complex and includes many firsts. With 71 subsurface sections, 64 bridges, 10 tunnels, and 10 stations, the new high-speed line will be the first in China to adopt a full-lifecycle BIM approach for all disciplines involved on the project. The Badaling Tunnel at 1.2 kilometers in length is the longest tunnel on the line and includes the new Badaling Great Wall Station, which, at 470-meters long and a maximum depth of 102 meters, with passengers traveling at 62 meters below the surface, is the largest underground station in China.
Facing collaboration and coordination challenges among the many disciplines involved, the project group chose to adopt technology that would enable Bentley’s Connected Data Environment, based on ProjectWise, and integrated applications to advance the “industrialization of BIM” – establishing logical links between and within disciplines working on the project, providing ready access to trusted information wherever and whenever required, and achieving the following outcomes:
CRECG’s project team is paying close attention to BIM advancements on the project, creating a unified environment for multidiscipline design, collaboration, and coordination that enables improved quality of deliverables and “right first time” construction. Together with verification of, and improvements to, China’s Railway BIM Standards, CRECG’s approach is benefiting the entire Chinese rail industry, and the organization is taking responsibility for its part in empowering the China dream.
Zhang Zhongliang, director of CRECG’s BIM Center, said, “The Beijing-Zhangjiakou intercity railway is of great guiding significance to other BIM projects in the railway industry’s future. By using Bentley’s technology, China Railway Engineering Consulting Group Co., Ltd. is working toward realizing its vision of intelligent construction, equipment, and operation and is the start of a new era for the world’s intelligent railway.”
Infraero, Empresa Brasileira de Infraestrutura Aeroportuária is one of the three largest airport operators in the world, managing 54 airports across Brazil. It facilitates more than 100 million passengers each year, accounting for nearly 60 percent of Brazil’s air traffic. Infraero is creating a parametric 3D model and database of Londrina Airport’s underground, land, and above-land information to improve its business intelligence and operations.
Londrina Airport will be the first in Brazil to have a digital twin. The final product will include 3D modeling of 20 buildings, one take-off-and-landing runway, two aircraft yards, taxiways, and access roads—a total airport surface area of 920,354 square meters. Infraero is going digital to improve its business intelligence and decision making.
By leveraging digital DNA to manage its assets, Infraero can take a more preventative approach to maintenance, effectively use airport space, and improve airport safety. Maintenance teams will be able to utilize real-time monitoring and control of assets for improved efficiency of remote asset management. The model will serve as a large-scale information repository to improve performance and obtain data more efficiently.
The digital engineering information, or digital DNA, of the project was modeled using Bentley’s design software. MicroStation’s point-cloud import feature enabled the team to model the entire airport via point clouds and conduct point-cloud studies to verify the existing facilities. OpenBuildings Designer was used to model existing buildings, such as the passenger terminal, cargo terminal, and fire station. OpenRoads was used to create the geometric project and runway system surfaces map: a comprehensive model of take-off and landing runways, taxiways, and service roads. When complete, the comprehensive building and infrastructure model will serve as a basis for future airport expansion projects, enable effective maintenance, cut maintenance costs, and increase asset availability. The live model will also facilitate a range of studies: passenger flow, demand and capacity, layout changes, and launch studies for new commercial areas.
Infraero has already experienced savings of BRL 540,000 per year with improved information management. The company plans to expand its use of BIM methods in the operation and maintenance phase of its other assets. The Digital Airport Pilot Project at Londrina Airport will serve as a model as the other 53 airports managed by Infraero seek to effectively leverage their digital DNA.
PatrĂcia Oliveira, BIM champion, Infraero, said, “[Bentley’s software enabled] comprehensive digital modeling [to] promote integration and collaboration across different areas of the company. [This will] benefit all business sectors [and offer] consistent and up-to-date information to all stakeholders.”
Londrina Airport is the first airport in the region to effectively leverage its digital DNA to improve business intelligence, asset management, and operations; it serves as an example for other airport owner-operators in the region that seek to promote safe and high-quality airport infrastructure.
Voyants Solutions Private Limited was selected to design an iconic new Gwalior Railway Station that would complement the existing station and attract tourism. The firm used BIM models and workflows to optimize building design and incorporate existing structures. Voyants Solutions designed a structure and development plan that specifically accommodated the challenging requirement of keeping the existing station fully operational during construction.
Like the city of Gwalior, the railway station will be a combination of new and old. The station sits between the old city of Gwalior to the west and the new settlement to the east. The proposed design embraces the old heritage station, which remains a focal point, and adds a light-weight shell structure based on the arch of the existing building. These new modular three-dimensional arches will bring light and new life to the complex. The project designers faced unique constraints to their design since the station will remain fully operational with all platforms open during construction. Voyants Solutions determined that it could meet these specifications with a framed structure, where multiple components could be fabricated off-site and placed in position with the help of cranes. The construction team would cast the pile foundations in-situ, using auger boring and self-compacting concrete.
Voyants Solutions constructed a complete BIM model using Bentley software. They designed the structure in MicroStation and STAAD.Pro, then created a digital engineering model in OpenBuildings Designer. The design required parametric modeling, 3D modeling, and animation. Given the parametrically controlled model, a base component was generated and informed based on site constraints. The complete BIM model made it easy to understand design requirements and optimize project results. Sustainability was a key feature of the design. The team used building energy modeling technology to optimize natural light and minimize the heat gain of the building. By incorporating large overhangs, shading features, and natural ventilation, the firm reduced the heat gain of the building by 40 percent.
A team of five designers at Voyants Solutions prepared the plan set and 3D model for this project in one month. Voyants Solutions estimated labor-hour savings of 30 percent for this proposal and a 500 percent ROI for the project. Bentley software helped the organization industrialize its BIM workflows to quickly deliver a high-quality design with a cohesive scheme.
Upendar Rao Kollu, managing director at Voyants Solutions, said, “Innovative designs need innovative applications. Bentley applications have allowed the multidiscipline team to work on a single platform and create iconic designs.” The Voyants Solutions team succeeded in creating a visually stunning and functional design for the Gwalior Railway Station that will improve passenger-related amenities, serve as a community hub, and contribute to the economic development of the local community.